Matrix fact
Matrix fact
Matrix fact
$$\begin{align}\mathbf{H}& = \mathbf{H}^T\\ \end{align}$$
$$\begin{align}\mathbf{H}& = \mathbf{H}^T\\ \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T&=(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)^T\\ \end{align}$$
$$\begin{align}\mathbf{H}& = \mathbf{H}^T\\ \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T&=(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)^T\\ \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T&=\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T \end{align}$$
$$\begin{align}\mathbf{H}^T\mathbf{H}&=\mathbf{H}\\ \end{align}$$
$$\begin{align}\mathbf{H}^T\mathbf{H}&=\mathbf{H}\\ \mathbf{H}\mathbf{H}&=\mathbf{H}\\ \end{align}$$
$$\begin{align}\mathbf{H}^T\mathbf{H}&=\mathbf{H}\\ \mathbf{H}\mathbf{H}&=\mathbf{H}\\ \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T&=\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\\ \end{align}$$
$$\begin{align}\mathbf{H}^T\mathbf{H}&=\mathbf{H}\\ \mathbf{H}\mathbf{H}&=\mathbf{H}\\ \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T&=\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\\ \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\underbrace{\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}}_{\mathbf{I}}\mathbf{X}^T&=\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\\ \end{align}$$
$$\begin{align}\mathbf{H}^T\mathbf{H}&=\mathbf{H}\\ \mathbf{H}\mathbf{H}&=\mathbf{H}\\ \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T&=\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\\ \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\underbrace{\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}}_{\mathbf{I}}\mathbf{X}^T&=\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\\ \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T&=\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\\ \end{align}$$
$$\begin{align}\mathbf{H}^T\mathbf{H}&=\mathbf{H}\\ \mathbf{H}\mathbf{H}&=\mathbf{H}\\ \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T&=\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\\ \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\underbrace{\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}}_{\mathbf{I}}\mathbf{X}^T&=\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\\ \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T&=\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\\ \end{align}$$
$$\textrm{tr}(\mathbf{H})$$
$$\textrm{tr}(\mathbf{H})$$
Matrix fact
$$\begin{align}\textrm{tr}(\mathbf{H})=&\textrm{tr}(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)\end{align}$$
$$\begin{align}\textrm{tr}(\mathbf{H})=&\textrm{tr}(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)\\ =&\textrm{tr}(\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1})\end{align}$$
$$\begin{align}\textrm{tr}(\mathbf{H})=&\textrm{tr}(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)\\ =&\textrm{tr}(\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1})\\ =&\textrm{tr}(\mathbf{I})\end{align}$$
$$\begin{align}\textrm{tr}(\mathbf{H})=&\textrm{tr}(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)\\ =&\textrm{tr}(\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1})\\ =&\textrm{tr}(\mathbf{I})\end{align}$$
What are the dimensions of this \(\mathbf{I}\)?
$$\begin{align}\textrm{tr}(\mathbf{H})=&\textrm{tr}(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)\\ =&\textrm{tr}(\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1})\\ =&\textrm{tr}(\mathbf{I})\end{align}$$
What are the dimensions of this \(\mathbf{I}\)?
$$\begin{align}\textrm{tr}(\mathbf{H})=&\textrm{tr}(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)\\ =&\textrm{tr}(\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1})\\ =&\textrm{tr}(\mathbf{I})\end{align}$$
What are the dimensions of this \(\mathbf{I}\)?
$$\begin{align}\textrm{tr}(\mathbf{H})=&\textrm{tr}(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)\\ =&\textrm{tr}(\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1})\\ =&\textrm{tr}(\mathbf{I})\end{align}$$
What are the dimensions of this \(\mathbf{I}\)?
$$\begin{align}\mathbf{e}^T\mathbf{e}=&(\mathbf{y}-\hat{\mathbf{y}})^T(\mathbf{y}-\hat{\mathbf{y}})\\ \end{align}$$
$$\begin{align}\mathbf{e}^T\mathbf{e}=&(\mathbf{y}-\hat{\mathbf{y}})^T(\mathbf{y}-\hat{\mathbf{y}})\\ =&(\mathbf{y} - \mathbf{H}\mathbf{y})^T(\mathbf{y}-\mathbf{H}\mathbf{y})\\ \end{align}$$
$$\begin{align}\mathbf{e}^T\mathbf{e}=&(\mathbf{y}-\hat{\mathbf{y}})^T(\mathbf{y}-\hat{\mathbf{y}})\\ =&(\mathbf{y} - \mathbf{H}\mathbf{y})^T(\mathbf{y}-\mathbf{H}\mathbf{y})\\ =&((\mathbf{I}-\mathbf{H})\mathbf{y})^T(\mathbf{I}-\mathbf{H})\mathbf{y}\\ \end{align}$$
$$\begin{align}\mathbf{e}^T\mathbf{e}=&(\mathbf{y}-\hat{\mathbf{y}})^T(\mathbf{y}-\hat{\mathbf{y}})\\ =&(\mathbf{y} - \mathbf{H}\mathbf{y})^T(\mathbf{y}-\mathbf{H}\mathbf{y})\\ =&((\mathbf{I}-\mathbf{H})\mathbf{y})^T(\mathbf{I}-\mathbf{H})\mathbf{y}\\ =&\mathbf{y}^T(\mathbf{I-H})^T(\mathbf{I}-\mathbf{H})\mathbf{y} \end{align}$$
$$\begin{align}\mathbf{e}^T\mathbf{e}=&(\mathbf{y}-\hat{\mathbf{y}})^T(\mathbf{y}-\hat{\mathbf{y}})\\ =&(\mathbf{y} - \mathbf{H}\mathbf{y})^T(\mathbf{y}-\mathbf{H}\mathbf{y})\\ =&((\mathbf{I}-\mathbf{H})\mathbf{y})^T(\mathbf{I}-\mathbf{H})\mathbf{y}\\ =&\mathbf{y}^T(\mathbf{I-H})^T(\mathbf{I}-\mathbf{H})\mathbf{y}\\ =&\mathbf{y}^T(\mathbf{I-H})\mathbf{y} \end{align}$$
$$E[\mathbf{e}^T\mathbf{e}]=E[\mathbf{y}^T(\mathbf{I-H})\mathbf{y}]$$
$$E[\mathbf{e}^T\mathbf{e}]=E[\mathbf{y}^T(\mathbf{I-H})\mathbf{y}]$$
Matrix fact
$$E[\mathbf{X}^T\mathbf{CX}]=E[\mathbf{X}]^T\mathbf{C}E[\mathbf{X}] +\textrm{tr}(\mathbf{C}\textrm{var}(\mathbf{X}))$$
$$\begin{align}E[\mathbf{e}^T\mathbf{e}]=&E[\mathbf{y}^T(\mathbf{I-H})\mathbf{y}]\\ \end{align}$$
$$\begin{align}E[\mathbf{e}^T\mathbf{e}]=&E[\mathbf{y}^T(\mathbf{I-H})\mathbf{y}]\\ =&E[\mathbf{y}]^T(\mathbf{I-H})E[\mathbf{y}]+\textrm{tr}((\mathbf{I-H})\textrm{var}(\mathbf{y}))\\ \end{align}$$
$$\begin{align}E[\mathbf{e}^T\mathbf{e}]=&E[\mathbf{y}^T(\mathbf{I-H})\mathbf{y}]\\ =&E[\mathbf{y}]^T(\mathbf{I-H})E[\mathbf{y}]+\textrm{tr}((\mathbf{I-H})\textrm{var}(\mathbf{y}))\\ =&\beta^T\mathbf{X}^T(\mathbf{I-H})\mathbf{X}\beta+\sigma^2\textrm{tr}(\mathbf{I-H})\\ \end{align}$$
$$\begin{align}E[\mathbf{e}^T\mathbf{e}]=&E[\mathbf{y}^T(\mathbf{I-H})\mathbf{y}]\\ =&E[\mathbf{y}]^T(\mathbf{I-H})E[\mathbf{y}]+\textrm{tr}((\mathbf{I-H})\textrm{var}(\mathbf{y}))\\ =&\beta^T\mathbf{X}^T(\mathbf{I-H})\mathbf{X}\beta+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{H}\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ \end{align}$$
$$\begin{align}E[\mathbf{e}^T\mathbf{e}]=&E[\mathbf{y}^T(\mathbf{I-H})\mathbf{y}]\\ =&E[\mathbf{y}]^T(\mathbf{I-H})E[\mathbf{y}]+\textrm{tr}((\mathbf{I-H})\textrm{var}(\mathbf{y}))\\ =&\beta^T\mathbf{X}^T(\mathbf{I-H})\mathbf{X}\beta+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{H}\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ \end{align}$$
$$\begin{align}E[\mathbf{e}^T\mathbf{e}]=&E[\mathbf{y}^T(\mathbf{I-H})\mathbf{y}]\\ =&E[\mathbf{y}]^T(\mathbf{I-H})E[\mathbf{y}]+\textrm{tr}((\mathbf{I-H})\textrm{var}(\mathbf{y}))\\ =&\beta^T\mathbf{X}^T(\mathbf{I-H})\mathbf{X}\beta+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{H}\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}\underbrace{(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}}_{\mathbf{I}}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ \end{align}$$
$$\begin{align}E[\mathbf{e}^T\mathbf{e}]=&E[\mathbf{y}^T(\mathbf{I-H})\mathbf{y}]\\ =&E[\mathbf{y}]^T(\mathbf{I-H})E[\mathbf{y}]+\textrm{tr}((\mathbf{I-H})\textrm{var}(\mathbf{y}))\\ =&\beta^T\mathbf{X}^T(\mathbf{I-H})\mathbf{X}\beta+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{H}\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}\underbrace{(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}}_{\mathbf{I}}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ \end{align}$$
$$\begin{align}E[\mathbf{e}^T\mathbf{e}]=&E[\mathbf{y}^T(\mathbf{I-H})\mathbf{y}]\\ =&E[\mathbf{y}]^T(\mathbf{I-H})E[\mathbf{y}]+\textrm{tr}((\mathbf{I-H})\textrm{var}(\mathbf{y}))\\ =&\beta^T\mathbf{X}^T(\mathbf{I-H})\mathbf{X}\beta+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{H}\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}\underbrace{(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}}_{\mathbf{I}}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(0)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ \end{align}$$
$$\begin{align}E[\mathbf{e}^T\mathbf{e}]=&E[\mathbf{y}^T(\mathbf{I-H})\mathbf{y}]\\ =&E[\mathbf{y}]^T(\mathbf{I-H})E[\mathbf{y}]+\textrm{tr}((\mathbf{I-H})\textrm{var}(\mathbf{y}))\\ =&\beta^T\mathbf{X}^T(\mathbf{I-H})\mathbf{X}\beta+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{H}\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}\underbrace{(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}}_{\mathbf{I}}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(0)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\sigma^2\textrm{tr}(\mathbf{I-H})\\ \end{align}$$
$$\begin{align}E[\mathbf{e}^T\mathbf{e}]=&E[\mathbf{y}^T(\mathbf{I-H})\mathbf{y}]\\ =&E[\mathbf{y}]^T(\mathbf{I-H})E[\mathbf{y}]+\textrm{tr}((\mathbf{I-H})\textrm{var}(\mathbf{y}))\\ =&\beta^T\mathbf{X}^T(\mathbf{I-H})\mathbf{X}\beta+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{H}\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}\underbrace{(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}}_{\mathbf{I}}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(0)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\sigma^2(\textrm{tr}(\mathbf{I}_{n\times n})-\textrm{tr}(\mathbf{H}))\\ \end{align}$$
$$\begin{align}E[\mathbf{e}^T\mathbf{e}]=&E[\mathbf{y}^T(\mathbf{I-H})\mathbf{y}]\\ =&E[\mathbf{y}]^T(\mathbf{I-H})E[\mathbf{y}]+\textrm{tr}((\mathbf{I-H})\textrm{var}(\mathbf{y}))\\ =&\beta^T\mathbf{X}^T(\mathbf{I-H})\mathbf{X}\beta+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{H}\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}\underbrace{(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}}_{\mathbf{I}}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(0)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\sigma^2(\textrm{tr}(\mathbf{I}_{n\times n})-\textrm{tr}(\mathbf{H}))\\ =&\sigma^2(n-\textrm{tr}(\mathbf{H}))\\ \end{align}$$
$$\begin{align}E[\mathbf{e}^T\mathbf{e}]=&E[\mathbf{y}^T(\mathbf{I-H})\mathbf{y}]\\ =&E[\mathbf{y}]^T(\mathbf{I-H})E[\mathbf{y}]+\textrm{tr}((\mathbf{I-H})\textrm{var}(\mathbf{y}))\\ =&\beta^T\mathbf{X}^T(\mathbf{I-H})\mathbf{X}\beta+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{H}\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}\underbrace{(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}}_{\mathbf{I}}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(\mathbf{X}\beta-\mathbf{X}\beta)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\beta^T\mathbf{X}^T(0)+\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\sigma^2\textrm{tr}(\mathbf{I-H})\\ =&\sigma^2(\textrm{tr}(\mathbf{I}_{n\times n})-\textrm{tr}(\mathbf{H}))\\ =&\sigma^2(n-\textrm{tr}(\mathbf{H}))\\ =&\sigma^2(n-(p+1)) \end{align}$$
Matrix fact
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |